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Abstract

Early detection of Coronary Artery Disease (CAD) and Non-Small
Cell Lung Cancer (NSCLC) is crucial for improving patient out-
comes. In this study, RGB-CNN (Convolutional Neural Network)
was implemented, and trained from scratch using Polar Maps for
CAD diagnosis and Computed Tomography (CT) images for NSCLC
diagnosis. The CNN predictions were then integrated with clinical
data into a Fuzzy Cognitive Map (FCM) classifier for each type of
diagnosis. Nuclear medicine experts provided linguistic values in
the form of fuzzy sets to define the relationships between input
and output concepts, which were later converted into interval val-
ues. Extreme Learning Machine (ELM) and Genetic Algorithm (GA)
were applied to the FCM learning process to refine the interconnec-
tions based on expert knowledge. To ensure the robustness of the
results, 10-fold cross-validation was employed. The DeepFCM-ELM
model demonstrated superior performance, achieving 80.4%+4.97%
accuracy for CAD diagnosis, and 91.9%+3.07% for NSCLC diagno-
sis using CT images. Heatmaps were generated to interpret CNN
predictions by highlighting pathological regions. These heatmaps
were then used in GPT, along with DeepFCM weights, CNN, and
DeepFCM prediction and input clinical values, employing Natural
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Language Generation to translate DeepFCM results into human-
readable language, enhancing the model’s overall explainability. All
these techniques have been integrated into a Medical Decision Sup-
port System (MDSS) designed to effectively manage both medical
classification challenges.
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1 Introduction

Coronary Artery Disease (CAD) is the most common type of heart
disease [13]. CAD refers to the blockage of coronary arteries, which
supply blood to the myocardium, due to the plaque constructed
on the inner walls of the arteries. This leads to stenosis of arteries,
which limits the circulation of the blood flow to the myocardium,
which can cause ischemic episodes [14]. Lung cancer is the leading
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cause of cancer-related deaths, where approximately 85% of which
are Non-Small Cell Lung Cancer (NSCLC). Since NSCLC does not
present early symptoms the majority of NSCLC lesions are at ad-
vanced stage, by the time they are detected. For both case studies,
early detection and timely intervention are fundamental, for de-
creasing mortality and selecting the appropriate treatment for each
patient. The diagnostic methods that are currently in use are often
invasive, expensive, time-consuming, and can pose risks for pa-
tients. Artificial intelligence (AI) has implemented techniques that
offer high accuracy and efficiency. Deep learning, machine learn-
ing, and fuzzy cognitive map models can analyze large datasets,
including medical instances and clinical information, to detect early
signs of diseases [8].

The following literature review includes related studies regard-
ing the early diagnosis of CAD and NSCLC. Regarding CAD di-
agnosis, in the study [2] the authors proposed different ensemble-
learning frameworks to detect different types of heart disease, with
CNN, Long-Short Term Memory, (LSTM), bidirectional LSTM (BiL-
STM), Gated Recurrent Unit (GRU), bidirectional GRU (BiGRU). The
dataset consisted of 800 records, describing the biological indicators
of the patients including age, sex, heart rate, etc. Preprocessing tech-
niques were applied with the min-max normalization techniques
and three different subsets were generated from different feature
selection methods. Furthermore, to handle the imbalance of the
dataset averaging, random under-balancing methods were applied
to generate instances to balance the dataset equally. Based on the
results, an ensemble classifier with BiLSTM or BiGRU model with
a CNN model attained the best performance metrics with accuracy
and F1-score between 91% and 96% for the different types of heart
disease. In the study [1] the authors aimed to detect CAD and eval-
uate patient risk, by applying different feature selection methods
and machine learning algorithms, to find the optimal combination.
395 patients were included in this study, with rest/stress myocardial
perfusion SPECT images demonstrating each instance. Segmenta-
tion was applied to manually extract the left ventricle myocardium,
where 118 radiomics features were extracted. Nuclear physicians
classified the instances into normal and CAD and low, intermedi-
ate, and high-risk groups. The dataset included 78 normal and 317
CAD patients, including 135 low, 12 intermediate, and 55 high-risk
patients, where normalization was applied with the Z-score, and to
handle the imbalance Synthetic Minority Over-sampling Technique
(SMOTE) was applied to selected features. Diabetes demonstrated
the highest correlation for cardiovascular events. For both tasks,
it seemed that the feature sets attained from the Stress images
demonstrated better the CAD pathology. For the first task, stress-
mRMR-KNN vyielded the best results with values of AUC, accuracy,
sensitivity, and specificity of 0.61, 0.63, 0.64, and 0.6 respectively,
and for the second task, stress-Boruta-GB achieved 0.79, 0.76, 0.75
and 0.76 accordingly. Concerning the NSCLC diagnoses, advanced
techniques have been implemented with CT scans explored aiming
at improving accuracy and efficiency. In [12] the aim was to classify
NSCLC into adenocarcinoma and squamous cell carcinoma. In this
work, dense neural networks (VGG-16 and ResNet-50) and sparse
neural network (Inception v3) were applied and compared for the
diagnosis of NSCLC. A total of 120 patients were utilized for the
classification of NSCLC, with CT images, where 60 patients were
initially classified by nuclear experts with adenocarcinoma and
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60 patients with squamous cell carcinoma. The CT images have a
pixel size of 512x512. The trained models were validated with the
LC25000 dataset, where the Inception-V3 network outperformed
them with sensitivity, specificity, and accuracy values of 96.66%,
99.12%, and 98.29% respectively. It seems that the current litera-
ture studies do not offer transparency behind the decision-making
process of the proposed models.

The novelty of this research study is to provide an explainable
method for CAD and NSCLC diagnosis and include Extreme Learn-
ing Machine in the training process of DeepFCM. DeepFCM has
been developed and published in previous studies [4]. As part of
the EMERALD project, the MDSS system has been developed [15],
and the DeepFCM-ELM model is incorporated for the multimodal
classification, improving diagnosis capabilities for both CAD and
NSCLC. Heatmaps are developed, where the pathological regions
are highlighted to interpret the decision-making process of CNNs,
as has been demonstrated in previous study [4]. Natural Language
Generation (NLG) is achieved by incorporating GPT to transform
DeepFCM results into human-readable language, to enhance the
transparency of the model’s outcomes, as illustrated in [4].

The remainder of the paper is organized as follows: Section 2
details the methods and methodology, Section 3 presents the results,
Section 4 discusses the findings, and Section 5 concludes with the
study’s key outcomes.

2 Materials & Methodology

2.1 CAD Patient Data

A total of 2036 patients underwent gated—SPECT MPI using 99mTc—
tetrofosmin on hybrid SPECT/CT systems between February 2018
and February 2022, at the Nuclear Medicine Department at the
University Hospital of Patras. Attenuation correction was applied
to all the gathered images. After ICA within 60 days and applying
exclusion criteria, 594 patients were selected, with 43.82% CAD-
positive. The ethical committee of the University General Hospi-
tal of Patras approved the data collection process protocol num-
ber 108/10-3-2022). The raw image data were tomographically
reconstructed on a dedicated workstation (Xeleris 3, GE Health-
care, Chicago, IL, USA) using the Ordered Subset Expectation—
Maximization (OSEM) algorithm with two iterations and ten sub-
sets. The software (Xeleris 3.0513) automatically generated polar
maps, which are 2D circular representations summarizing the re-
sults of the 3D tomographic slices. These polar maps were saved
in Digital Imaging and Communications in Medicine (DICOM) for-
mat for further processing. The twenty-two clinical characteristics
considered are 1. Sex, 2. Age, 3. BML 4. known CAD, 5. previous
AM]I, 6. previous PCI, 7. previous CABG, 8. previous STROKE, 9.
Diabetes, 10. Smoking, 11. Hypertension, 12. Dyslipidemia, 13.
Angiopathy, 14. Chronic Kidney Disease, 15. Family History of
CAD, 16. Asymptomatic, 17. Atypical Symptoms, 18. ANGINA
LIKE, 19. Dyspnea on Exertion, 20. Incident of Precordial Pain, and
21. ECG, along with the 22. Expert Diagnosis (see [7]).

2.2 NSCLC Patient Data

PET/CT imaging was applied at the University Hospital of Patras
with the Discovery iQ3 sl16 hybrid PET/CT scanner, in order to
capture 3D whole-body volumes in a supine position of patients
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with a 15 cm field of view. Two nuclear experts with significant ex-
perience (N.P., 10 years of experience, D.J.A., 30 years of experience)
classified SPN malignancy through patient follow-up. The study
was performed with obtaining patients’ informed consent. From
2020 to 2023 period over 800 scans were gathered and reviewed,
with 456 patients selected based on criteria excluding SPNs over
30 mm, where222 benign and 234 malignant cases were included.
Experts annotated CT scan slices, providing the finding’s type, loca-
tion, margins, diameter, and SUVmax and SPN diameter along with
demographic information about each patient (gender, age, BMI).
The SUVmax and diameter parameters were extracted from the PET
scan. Each SPN finding is represented by a single 2D slice in which
the full demonstration of the SPN nodule is visible.

2.3 Deep Fuzzy Cognitive Map Methodology

The DeepFCM method has been introduced in previous studies
and has been applied for the diagnosis of CAD using Polar Maps
and for NSLC diagnosis using PET images (see [3]) and attained
exceptional results, while offering interpretability of results. The
DeepFCM approach combines the transparency of Fuzzy Cognitive
Maps (FCMs) with the feature extraction capabilities of CNNs to
form a holistic prediction, based on both clinical and imaging data.
The clinical data obtained from each study are treated as input
concepts from the FCM classifier to model the influence between
the clinical factors, and the diagnosis [6]. RGB-CNN refers to a
CNN, which has been implemented from scratch and tailored for
each study and has been developed in previous studies for image
classification tasks. In this research, RGB-CNN is trained to the
Polar Maps images for CAD diagnosis and CT images for NSCLC
diagnosis to predict the outcome of each image instance. Combined
with the associated clinical data, these CNN predictions form the
multimodal dataset for the DeepFCM framework, leveraging the
strengths of both deep learning and FCM in handling complex
medical data for more accurate predictions and insights. This study
integrated ELM for the DeepFCM learning process to calculate
concept interconnections.

2.3.1 Proposed ELM Algorithm for DeepFCM Training Process. Ex-
treme Learning Machine is a training algorithm by Huang et al. 5]
and was initially designed for training single hidden layer feedfor-
ward neural networks (SLFNs). Its different approach from tradi-
tional neural networks that demand fine-tuning of parameters, is
highly advantageous. In ELM, hidden weights are randomly gener-
ated, preventing the necessity for additional adjustments. ELM’s
training process typically involves random filter mapping, wherein
weights and biases undergo random generation. ELM also includes
linear parameter solving, where output weights are determined by
minimizing errors. A pivotal challenge of ELM lies in its capac-
ity to attain minimal training error and output weights with the
minimum norm.

Based on previous studies [5], [10], ELM has been applied in med-
ical imaging tasks and has demonstrated time efficiency throughout
its computational process.

Regarding the adaptation of ELM in the FCM learning process,
ELM calculates the interconnections between concepts, ultimately
improving the model’s prediction capability, by initializing a set of
random weights for the input layer or in our case based on expert
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knowledge, then passing the input data through the hidden layer,
and calculating the hidden layer output using a dot product. The
output weights are computed with the Moore-Penrose pseudoin-
verse equation. In the FCM learning process, the weights between
concepts are iteratively updated using ELM predictions. The goal is
to minimize the Mean Squared Error (MSE) between the actual and
predicted outputs by adjusting the weights with the application
of regularization techniques. The learning rate and regularization
parameters are used to guide the weight adjustments, ensuring
that the model converges toward an optimal solution. Through
these steps, ELM enhances the FCM’s ability to model complex
relationships and improve diagnostic accuracy. The pseudocode of
ELM integrated into DeepFCM learning is presented.

Algorithm 1 ELM integration into DeepFCM learning

Step 1: Initialization of the DeepFCM structure
Define the DeepFCM nodes and initialize weighted relationships
among concepts
Step 2: ELM structure
Select ELM parameters: number of hidden neurons, activation
function, and learning rate
Initialize ELM weights and biases randomly/based on expert
knowledge
Step 3: Training Loop
Update the activation levels of DeepFCM nodes with Kosko’s
inference equation
Integrate ELM training
Train DeepFCM through the ELM network using DeepFCM
concepts as ELM input nodes
Calculate ELM hidden layer output H = X - WnT
Update ELM weights based on training error (MSE)
Calculate output weights based on the Moore-Penrose
pseudoinverse Woyr = HT - Y
Optimize interconnections based on
Wour = chm +1 - [(Yrear = Yeim)  Yeim - (1— Yelm)]T
end

2.3.2 Inference Process. The weight matrix, which represents the
influence and relationships among various clinical and imaging
factors in the context of CAD and NSCLC diagnosis is calculated
by ELM. During training, the DeepFCM-ELM model adjusts these
weights to minimize error and optimize performance, effectively
learning from expert knowledge. Once the learning process is
terminated, and the final interconnections among concepts have
been calculated the weight matrix is applied to the testing dataset,
enabling the model to evaluate new instances based on the learned
interconnections.

Heatmaps are generated using the Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) technique, as implemented by Sel-
varaju [11]. Since the fully connected layers of a CNN lose spatial
information, Grad-CAM leverages the feature maps from the final
convolutional layer to highlight the most influential pixel regions.
Natural Language Generation (NLG) is employed by creating a
prompt, which is then processed by the GPT-API, an Application
Programming Interface provided by OpenAl that leverages the
Generative Pre-trained Transformer 4 (GPT-4) to transform the
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Figure 1: Demonstration of the DeepFCM methodological pipeline applicable to CAD and NSCLC diagnosis

Table 1: Results obtained with RGB-CNN to Polar Maps image dataset and <strike>with</strike> DeepFCM as a multimodal

approach for CAD diagnosis

Model Accuracy Loss Sensitivity Specificity Precision
RGB-CNN 75.58%+5.25% 0.45+0.04 81.72%+5.59% 65.48%+9.52% 72%+7.85%
DeepFCM-GA 78.29%+6.05% 0.22+0.06 77.86%+10.47% 75.67%+11.41% 78.82%+6.89%
DeepFCM-ELM 80.4%+4.97% 0.19+0.05 75.47%+11.07% 83.75%+14.33% 73.98%+8.49%

Table 2: Results attained with RGB-CNN to CT image dataset and <strike>with</strike> DeepFCM as a multimodal approach

for NSCLC diagnosis

Model Accuracy Loss Sensitivity Specificity Precision
RGB-CNN 84.69%+5.97% 0.45+0.14 85.24%+11.8% 79.11%+11.54% 86.39%+9.13%
DeepFCM-GA 85.71%+4.53% 0.14+0.04 79.52%+13.89% 90.17%+10.22% 86.8%+4.09%
DeepFCM-ELM 90.57%+3.07% 0.08+0.03 81.9%+10.56% 96%+5.47% 89.21%+5.06%

DeepFCM results into human-readable explanations for nuclear
physicians. This prompt incorporates the clinical values of the
respective patient, the heatmap visualization, which refers to the
interpretation of CNN predictions [4], [9] the interconnections
among concepts generated from DeepFCM, and the CNN and Deep-
FCM predictions for the particular patient. Figure 1 demonstrates
the proposed DeepFCM methodological pipeline.

3 Results
3.1 Classification results

Robust evaluation metrics have been employed, including accuracy,
loss, sensitivity, specificity, and precision, to demonstrate a clear
comparison among the classification abilities of the developed mod-
els. 10-fold cross-validation is used, where the dataset is divided
into 10 subsets, where the model is trained on 9 subsets and vali-
dated to the remaining one until all subsets have been utilized as
the validation set.

Table 1 shows the performance of RGB-CNN, which has been
trained to the CAD Polar Maps images only, along with DeepFCM-
GA, and DeepFCM-ELM, which are multimodal approaches incor-
porating Genetic Algorithm (GA) and ELM as learning techniques.
In Table 2, the same experiments have been conducted, using the
CT images for NSCLC diagnosis.

Based on the attained results from Table 1 and Table 2 for the
CAD diagnosis using Polar Maps, as well as for NSCLC diagnosis
using CT images, it is demonstrated that the multimodal approaches,
which combine clinical data and image predictions allow the model
to capture a broader spectrum of information, ultimately leading
to more robust and reliable predictions for both CAD and NSCLC.

More specifically, DeepFCM-ELM demonstrates superior perfor-
mance compared to the multimodal approach DeepFCM-GA, for
both case studies.

3.2 Figures

3.2.1 Classification using DeepFCM-ELM.. To test the performance
of DeepFCM-ELM, a 66-year-old male with a BMI of 23.8 patient
was selected. His medical history includes known CAD, previous
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Decision:Pathological

Multimodal Probability Score: 99.06% CNN Probability Score: 62.80%

The multimodal model exhibits the following evaluation metrics in EMERALD Based on analysis of the image data alone, the CNN model classified it as
external test patient cohorts with Accuracy 80.4%, Sensitivity 75.47%, and Pathological
Specificity 83.75%.
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Percutaneous Coronary Intervention (PCI), previous stroke, hy- 3. A prompt is constructed that incorporates DeepFCM intercon-
pertension, dyslipidemia, and, he has dyspnea on exertion, which nections, CNN and DeepFCM predictions, and the values of the
experts have predicted as pathological. Figure 2 illustrates that clinical parameters. A clear analysis is presented of the contribu-
through the developed MDSS, DeepFCM-ELM has diagnosed him tion of the clinical parameters and the provided image and heatmap
as pathological, based on the provided Polar Map image with a visualization for the CAD diagnosis.

probability score of 62.8% and based on the multimodal approach

with a probability score of 99.06%. Furthermore, the interconnec- 3.3 NSCLC diagnosis

tions are demonstrated for the CAD diagnosis, combining clinical 3.3.1 Classification using DeepFCM-ELM.. Regarding NSCLC di-

data with Polar Maps as imaging inputs, where dyslipidemia and agnosis with the application of DeepFCM-ELM, we considered a

CNN prediction have the highest influences for CAD diagnosis. patient case with the following characteristics: a 62-year-old female
with a BMI of 33.3, a blood glucose level of 101.1, and an SUVmax
of 2.0. The SPN measures 1.07 cm in diameter and is located in the

3.2.2 Natural Language Generation Inference. NLG reasoning is right lower lobe. Figure 4 presents the diagnosis, where RGB-CNN

applied to interpret DeepFCM results, as demonstrated in Figure as a stand-alone model predicted this instance as malignant, with a
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CNN Probability Score: 76.51%

Based on analysis of the image data alone, the CNN model classified it as
Malignant.
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Figure 4: Generated Interconnections of DeepFCM-ELM to CT Images for NSCLC Diagnosis
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Figure 5: NLG applied to NSCLC Diagnosis through MDSS

probability score of 76.51%, and DeepFCM-ELM as a multimodal
approach predicted this instance as malignant with a probability
score of 86.61% based on the clinical values and the CT image. Also,
the interconnections generated by the DeepFCM-ELM model are
demonstrated, where SUVmax, diameter, and CNN prediction have
the highest influence on NSCLC diagnosis.

3.3.2  Natural Language Generation Inference. NLG was applied
to the NSCLC diagnostic process to interpret the decision-making
process of DeepFCM-ELM, as illustrated in Figure 5. DeepFCM has
classified the patient’s SPN as malignant, consistent with the CNN
model’s prediction, indicating a high likelihood of malignancy.

4 Discussion

In this study, we applied DeepFCM to the diagnosis of CAD and
NSCLC through the developed MDSS, using two distinct learning
techniques: Genetic Algorithm and Extreme Learning Machine.
Both GA and ELM were integrated into the FCM learning process
to calculate the interconnections between input-output concepts
derived from clinical data and CNN predictions. They proved their
capacity to adapt to the training process of DeepFCM, offering a

robust framework for integrating clinical data and image-based
predictions. ELM offered a more structured approach by simplify-
ing the learning process, leading to faster convergence times, and
demonstrated slightly superior performance in CAD and NSCLC di-
agnosis. The generated interconnections among concepts revealed
the influence of each attribute on the final diagnosis, leveraging
the ability of FCMs. With the visualization of heatmaps, DeepFCM
demonstrates the most impactful pixel regions of the images, re-
vealing the calculations behind CNN’s decision-making process.
Moreover, NLG was employed to further enhance the interpretabil-
ity of the DeepFCM results by transforming the complex outputs of
DeepFCM into human-accepted explanations. These explanations
bridge the gap between the developed Al techniques and the clinical
applications.

However, this study includes certain limitations. Although the
datasets for CAD and NSCLC diagnosis included a sufficient num-
ber of instances, they were sourced from a single hospital. Includ-
ing data from different regions could enhance the generality of
the proposed algorithms. Furthermore, even though DeepFCM-
ELM demonstrated superior performance, the strengths of the rest
of the models derived from literature studies could be examined.
DeepFCM-GA achieved higher precision in CAD diagnosis, while
RGB-CNN exhibited higher sensitivity. These strengths suggest
opportunities to further experiment with DeepFCM-ELM’s method-
ology and architecture to balance these metrics.

5 Conclusions

DeepFCM proves to be a highly effective approach since it de-
livered strong performance metrics for both case studies, which
highlights its potential for broader clinical application. The applica-
tion of two learning techniques, Genetic Algorithms, and Extreme
Learning Machine demonstrates the capability of DeepFCM to be
applied to different learning methods. Additionally, the explain-
ability included in the DeepFCM classification process significantly
enhances its trustworthiness, as it allows medical professionals to
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validate the model’s predictions, by demonstrating its clear decision-
making process, with the interconnections among concepts, the
heatmap generation, and the transformation of results in human-
understandable language. In future work, the research team aims
to broaden the provided approach to a wider variety of medical
classification problems and enhance the methodology of natural
language generation.
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